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ABSTRACT 

Engineered systems are typically designed to be robust and have very low probabilities of failure. 

However, developing accurate estimates of these probabilities can be challenging given the 

complex (and typically nonlinear) nature of the system behavior and the computational cost of 

simulating a sufficient number of realizations/scenarios to capture the failure modes. Among other 

approaches, importance sampling can reduce the computational cost and/or the variance in failure 

probability estimates; however, the optimal importance sampling distribution can only be computed 

if the failure probability is already known. This work proposes to use normalizing flows (NFs), a 

type of machine learning model, to learn a near-optimal importance sampling distribution. NFs are 

generative modeling techniques amenable to exact, but efficient, density evaluation. The approach 

is first evaluated on a suite of challenging benchmark reliability estimation problems, comparing 

against two techniques widely adopted for similar tasks: subset simulation and the cross-entropy 

method; the results show that the proposed approach can be used to estimate rare-event probability 

in cases that have extremely low failure probabilities on the order of 10−7, high-dimensionality, and 

multiple failure modes. Finally, the proposed approach is applied to estimate the reliability of a 

structural mechanics problem. 

1 INTRODUCTION 

Estimating the probability of a rare event is critical to many safety-critical applications spanning various 

disciplines of science and engineering. Mathematically, the problem involves estimating the probability of 

failure P𝐹, which is given by the following 𝑑-fold integral (Beck and Zuev, 2015): P𝐹 = ∫ 𝑝𝐗(𝐱)g(𝐱) ≤ 0 d𝐱 = ∫ 𝕀{𝑔(𝑥) ≤ 0} 𝑝𝐗(𝐱) d𝐱   (1) 

where 𝐱 ⊆ ℝ𝑑 is the 𝑑-dimensional random vector, representing the input random variables, with joint 

probability density function (pdf) 𝑝𝐗(𝐱); 𝑔(𝐱) is the limit state function (LSF); 𝕀{∙} is the indicator function; 

and 𝐹 = {𝐱 ∣ 𝑔(𝐱) ≤ 0} is the rare event domain. The local maximizers to the constrained optimization 

problem: arg max𝐱 𝑝𝐗(𝐱) such that 𝑔(𝐱) = 0, are called the design points or failure modes. Using Monte 
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Carlo simulation (MCS) to estimate P𝐹 is not bereft of challenges: large sample sizes are necessary to 

estimate P𝐹 when its value is small, which can render the task computationally intractable. Variance 

reduction methods attempt to improve the computational efficiency of MCS by increasing the frequency of 

sampling from 𝐹, thereby reducing the required sample size. Importance sampling uses a biasing 

distribution, also known as the importance sampling distribution, to sample frequently from 𝐹. However, the 

construction of a good ISD relies on knowledge about the number of failure modes: information that is 

seldom available. 

In this work, we propose REIN — a new technique for estimating the probability of rare events via 

importance sampling, where the ISD is constructed using normalizing flows (NFs) (Rezende and Mohamed, 

2015). Normalizing flows use compositions of invertible neural networks to construct bijective functions that 

can be used to convert a simple probability density into a more complicated probability density. The task of 

estimating P𝐹 essentially boils down to training a normalizing flow capable of inducing a good importance 

sampling distribution. To this end, we propose a loss function to train the normalizing flows that is tailored 

to rare-event simulation. One advantage of REIN, as we will show, is that it does not rely on or require 

information about the number of failure modes. We apply REIN to a suite of benchmark reliability 

estimation problems and a structural reliability problem. The results show that REIN performs well on 

problems featuring multiple failure modes, high dimensionality, and high nonlinearity.  

2 BACKGROUND 

2.1 Importance sampling 

After introducing the importance sampling distribution ℎ𝐗(𝐱) into Equation 1, the importance sampling 

estimator for P𝐹 can be expressed as P𝐹IS = 1𝑁 ∑ 𝕀𝑁𝑖=1 {𝑔(𝐱(𝑖)) ≤ 0}, (2) 

where 𝐱(𝑖) is the 𝑖th
 realization of 𝐱 drawn from ℎ𝐗. In theory, there exists an optimal importance sampling 

distribution ℎ𝐗∗ (𝐱) for which the variance of the IS estimator is 𝕍[P𝐹IS] = 0 irrespective of the sample size 𝑁 

(Tabandeh et al., 2022). However, the normalizing constant of ℎ𝐗∗ (𝐱) is P𝐹, the very quantity that is to be 

estimated. Hence, sampling from ℎ𝐗∗ (𝐱) is impossible. Similar to other parametric importance sampling 

methods, REIN uses normalizing flows to construct quasi-optimal importance sampling distributions, while 

utilizing information about the shape of ℎ𝐗∗ (𝐱), to efficiently compute P𝐹. 

2.2 Normalizing flows 

Normalizing flows (Rezende and Mohamed, 2015) are based on the idea that a simple probability 

distribution, say 𝑝𝑋, can be transformed into complex probability distributions, like ℎ𝐗∗ , using a sequence of 

bijective mappings. Let the generator 𝐟(𝐱; 𝛉): ℝ𝑑 → ℝ𝑑 be a bijective and differentiable function 

parameterized by 𝛉; then, the change of variables formula establishes the following relationship between the 

latent pdf 𝑝𝐗 and the induced pdf 𝐟#𝑝𝐗: 𝐟#𝑝𝐗(𝐱) = 𝑝𝐗(𝐱)|det ∇𝐱 𝐟(𝐱; 𝛉)|−1, (3) 

where det ∇𝐱 𝐟(𝐱; 𝛉) denotes the determinant of the Jacobian matrix of 𝐟(⋅; 𝛉) (Rezende and Mohamed, 

2015). It is difficult to construct generators in high-dimensional spaces that are sufficiently expressive and, 

therefore, capable of inducing the desired target distribution. Moreover, the computation of det ∇𝐱 𝐟(𝐱; 𝛉) 

and its derivative with respect to 𝛉 must be efficient to enable useful application of probability 

transformations like Equation 3. Both of these are achieved with normalizing flows by stacking multiple 

invertible neural networks:  
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𝐟 = 𝐟𝑁f ∘ 𝐟𝑁f−1 ∘ … ∘ 𝐟1, (4) 

such that the resultant Jacobian determinant is  det ∇𝐱 𝐟(𝐱; 𝛉) = ∏ det ∇𝐱[𝑘] 𝐟𝑘+1(𝐱[𝑘])𝑁f−1𝑘=0 , (5) 

where 𝐱[𝑘+1] = 𝐟𝑘+1(𝐱[𝑘]), 𝐱[0] = 𝐱 and 𝑁f is the number of flow layers. Each flow layer 𝐟𝑘 is an invertible 

neural network and 𝛉 now represents the collective parameters of all flow layers. 

In this work, we construct invertible neural networks using planar transformations (Rezende and Mohamed, 

2015). A planar transformation applies the following invertible transformation to the input 𝐱 in flow layer 𝑘: 𝐟𝑘(𝐱) = 𝐱 + 𝐮𝑘 ⋅ 𝑠(𝐰𝑘T𝐱 + 𝑏𝑘) (6) 

where 𝐮𝑘 ∈ ℝ𝑑, 𝐰𝑘 ∈ ℝ𝑑  and 𝑏𝑘 ∈  ℝ are the parameters of 𝐟𝑘, and s: ℝ → ℝ is a nonlinear activation 

function. with derivative 𝑠′. Herein, we use hyperbolic tangent activation. The Jacobian determinant of 𝐟𝑘 is: |det ∇𝐱 𝐟𝑘(𝐱)|  =  |1 + 𝐮𝑘T𝛙𝑘(𝐱)| (7) 

where 𝛙𝑘(x) = s′(𝐰𝑘T𝐱 + 𝑏𝑘)𝐰𝑘. Notably, the number of parameters in every flow layer is 2𝑑 + 1. Thus, 

the total number of parameters of the normalizing flow also scales linearly with the dimensionality 𝑑. 

3 PROPOSED METHOD: REIN 

3.1 Training the normalizing flow model to construct the importance sampling distribution 

When using REIN, the task of estimating P𝐹 boils down to training a NF model with 𝑁f flow layers such that 𝐟#𝑝𝐗 is a good approximation to ℎ∗. We propose to train the NF model using the following loss function: 𝛉∗ = arg min𝛉 𝔼𝐱 ~ 𝑝𝐗 [−  log 𝑔̃(𝐟(𝐱; 𝛉); 𝛼𝑡)  −  log 𝑝𝐗(𝐟(𝐱; 𝛉); 𝛼𝑡)  − 𝛾𝑡  log |det ∇𝐱 𝐟(𝐱; 𝛉)|] (8) 

where 𝑔̃(𝐱; 𝛼𝑡) = {1 + exp[𝛼𝑡𝑔(𝐱)]}−1 is the sigmoid function. 𝛼𝑡 and 𝛾𝑡 are updated during training as: 𝛼𝑡 = min{𝛼end, 1 + (𝛼end − 1)𝑡/𝑇′} (9) 𝛾𝑡 = min{𝛾start, 1 + (𝛾start − 1)𝑡/𝑇′} (10) 

where the subscript 𝑡 denotes the 𝑡th
 training epoch, 𝑇 is the total number of training epochs, and 𝑇′ <  𝑇 is 

an epoch threshold beyond which the parameters 𝛼𝑡 and 𝛾𝑡 are held constant. The gradients of the loss 

function must be approximated using MCS; we denote 𝑁b to be the MC sample size. It is possible to derive 

Equation 8 by minimizing the reverse Kullback-Leibler (KL) divergence between ℎ𝐗∗  and 𝐟#𝑝𝐗, and then 

replacing the non-differentiable indicator function by 𝑔̃( ∙ ; 𝛼𝑡) and inflating the target density at epoch 𝑡 —  ℎ𝐗† ∝ 𝑔̃( ∙ ; 𝛼𝑡)𝑝𝐗 — by 𝛾𝑡. Inflating the target density increases the chances of sampling from 𝐹.  

REIN requires as input from the user: the normalizing flow model with number of flow layers 𝑁f, the MC 

sample size 𝑁b, and the values of 𝛼end and 𝛾start. The user must also decide on an appropriate stochastic 

minimization algorithm along with the learning rate in order to train the normalizing flow model.  

3.2 Computing the rare event probability using the importance sampling distribution 
induced by the normalizing flow model 

The failure probability P𝐹 can be computed using REIN in two steps: 

Step 1. Train a NF model with 𝑁f flow layers. Training essentially involves minimizing the loss function 

from Equation 6 to determine the parameters 𝛉∗of the normalizing flow model. 

Step 2. Estimate P𝐹 using IS with 𝐟#𝑝𝐗( ⋅ ; 𝛉∗) as the ISD. The steps for that are: 
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 Generate 𝑁 iid realizations of 𝐱 from 𝑝𝐗. Let 𝐱(𝑖) denote the i
th
 realization. i.

 Evaluate the LSF for every generator transformed 𝐱(𝑖), i.e., compute 𝑔(𝐟(𝐱(𝑖); 𝛉∗)).  ii.

 Compute 𝐟#𝑝𝐗(𝐱(𝑖); 𝛉∗) using Equation 3.  iii.

 Estimate P𝐹 as: P𝐹REIN = 1𝑁  ∑  𝕀𝑁𝑖=1 {𝑔(𝐟(𝐱(𝑖); 𝛉∗))}  ⋅  𝑝𝐗(𝐟(𝐱(𝑖); 𝛉∗) 𝐟#𝑝𝐗(𝐱(𝑖); 𝛉∗)⁄  iv.

3.3 Statistical properties of the estimator 

Since REIN is built on importance sampling, P𝐹REIN is unbiased as long as 𝐟#𝑝𝐗(𝐱; 𝛉∗) > 0 ∀ 𝐱 ∈ 𝐹, which is 

true since 𝐟 is bijective. Moreover, for a perfectly trained generator, which is the case when the Kullback-

Liebler divergence between the induced probability density 𝐟#𝑝𝐗 after training and the target probability 

density ℎ𝐗†† ∝  𝑔̃( ∙ ; 𝛼end)𝑝𝐗 equals zero, the variance of the estimator P𝐹REIN is  𝕍[P𝐹REIN] =  1𝑁 {P𝐹̃𝔼 [𝕀{𝑔(𝐱)≤0} g̃(𝐱;𝛼end) ]  −  P𝐹2}, (11) 

where P𝐹̃  =  ∫ g̃(𝐱; 𝛼end)𝑝𝐗(𝐱)d𝐱. When 𝛼end > 0 and after ignoring some higher-order terms, Equation 11 

simplifies to  𝕍[P𝐹REIN] =  1𝑁 {P𝐹̃P𝐹  −  𝑃𝐹̃𝔼[𝕀{𝑔(𝐱) ≤ 0} 𝑒𝛼end𝑔(𝐱)]  −  P𝐹2}. (12) 

Thus, Equations 11 and 12 imply consistency of the estimator P𝐹REIN. Moreover, as 𝛼end → ∞ we have: 𝑔̃(𝐱; 𝛼end) → 1 and 𝑒𝛼end𝑔(𝐱) → 0 ∀ 𝐱 ∈ 𝐹, which ultimately causes P𝐹̃ → P𝐹. Thus, 𝕍[P𝐹REIN] → 0 as  𝛼end → ∞ and the generator 𝐟 will have induced the optimal importance sampling distribution. However, 𝛼end is some finite value; thus, the induced distribution can at best be quasi-optimal. 

4 NUMERICAL EXAMPLES 

We compare REIN with the improved cross-entropy (iCE-IS) method (Papaioannou et al., 2019); we explore 

both Gaussian mixture (GM) and von Mises-Fisher-Nakagami mixture (vMFNM) models as candidate 

importance sampling distributions. Unless otherwise mentioned, we use a sample size of 5000 for each step 

of the optimization procedure that determines the parameters of the mixture densities in iCE-IS and set the 

target coefficient of variation of the importance weights to 1.5. Moreover, we choose the optimal number of 

mixture components after monitoring the corresponding estimator’s performance. We also compare REIN 

with subset simulation (SS) (Au and Beck, 2001), which remains widely popular because it is not affected by 

the curse of dimensionality. For SS, we use standard normal proposal distributions conditioned on the current 

state. The conditional failure probability is chosen to be 0.1. Moreover, the sample size at each level is 

chosen such that the total number of LSF evaluations is similar to the other methods. 

When comparing different variance reduction methods, we measure the performance of any estimator using 

the normalized root mean square error (nRMSE); a lower value of nRMSE indicates better performance. 

Similarly, nRMSE ×  √𝑁call is a combined measure for the coefficient of performance such that a low value 

indicates high efficiency. We evaluate nRMSE from 100 independent runs and record the total number 𝑁call 
of LSF evaluations in each case and report the average. For the IS-based methods, 𝑁call includes 𝑁; we use 𝑁 = 5000 for the benchmark problems. Wherever necessary, we estimate the reference value of P𝐹 using 

MCS with sample size 109. 

We implement REIN using PyTorch and train the NF models using the Adam algorithm. We start training 

the NF model with zero weight on the log 𝑔̃(𝐟(𝐱; 𝛉); 𝛼𝑡) and log  𝑝𝐗(𝐟(𝐱; 𝛉); 𝛼𝑡) terms for the first 10 

epochs; thus, no LSF evaluations are made during this period.  
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4.1 Benchmark examples 

4.1.1 Two-dimensional limit state function with infinitely many design points 

Consider the LSF 𝑔1 = 5.62 − (𝑥12 + 𝑥22) defined in the standard normal space (Arief et al., 2021). LSF 𝑔1 

has P𝐹  =  1.55 ×  10−7 and an infinite number of design points. We use 𝑁f = 20 flow layers, 𝛼end = 10, 𝛾start = 20, 𝑇′ = 0.9 𝑇, 𝑁b = 50, and choose 𝑇 to match the number of LSF evaluations made by iCE-IS. 

We set the learning rate at 0.001. REIN and SS yielded estimators with nRMSE equal to 0.046 and 0.056 

with 𝑁call =  8.4 ×  104 and 26.4 ×  104, respectively. The performance of iCE-IS with mixture models 

was found to be very sensitive to the number of mixture components used. The nRMSE ×  √𝑁call of the 

estimators obtained using iCE-IS with GM models were 57.94, 54.98, 49.13, 21.18, 10.29, 23.89 and 22.65 

using 1, 2, 4, 8, 12, 16 and 20 mixture components, respectively; in comparison, nRMSE × √𝑁call is equal 

to 13.33 for REIN. With a similar number of LSF evaluations as REIN, the nRMSE for the best iCE-IS 

estimator with GM and vMFNM models were 0.036 and 0.067, respectively, with 12 mixture components 

in both cases. Figure 1 shows some realizations drawn from importance sampling distributions obtained 

using REIN, and iCE-IS with GM and vMFNM models. On this benchmark, REIN outperforms SS. 

Although iCE-IS has the capability of outperforming REIN, choosing the optimal number of mixture 

components is difficult and bound to increase the computational burden. Thus, REIN has the potential to be a 

black-box toolbox for rare event simulation since it can perform when very little knowledge about the 

problem is available at the outset. 

 

 

Figure 1: Realizations drawn from the representative ISDs obtained using REIN and iCE-IS 

4.1.2 High-dimensional linear limit state function with two design points 

LSF 𝑔2 is defined in the standard normal space as the series system of two LSFs:  𝑔2 = min{ 5 ± 𝑑−1/2 ∑ 𝑥𝑖𝑑𝑖=1 }, (13) 

which has two design points located at equidistant points on two opposite sides of the origin (Papaioannou et 

al., 2019). The probability of failure P𝐹 is independent of the dimension 𝑑 and equal to P𝐹  =  5.74 × 10−7. 

For this study, we adopt 𝑁f = 5, 𝛼end = 10, 𝛾start = 10, 𝑇 = 3000, 𝑇′ = 0.9833𝑇 = 𝑇 − 50, 𝑁b = 100, 

and set the learning rate at 0.01. We vary the dimension 𝑑 between 10 and 500. At dimensions 𝑑 > 100, 

iCE-IS with a GM model fails to converge; thus, we compare REIN against iCE-IS with vMFNM model 

using two mixture components, and against SS. Figure 2 shows the performance of REIN on LSF 𝑔2, as 𝑑 is 

varied, compared to iCE-IS with a vMFNM model and to SS. 𝑁call =  3.05 × 105 was kept similar for all 

methods across all dimensions. Again, REIN outperforms SS. However, for dimensions 𝑑 ≤ 325, the 

performance of REIN and iCE-IS with vMFNM distribution is similar, with the latter performing marginally 

REIN iCE-IS w/ GM iCE-IS w/ vMFNM 
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better in some cases. However, note that the number of mixture components to be used in iCE-IS was 

correctly set equal to the number of design points in this study. Even so, when 𝑑 > 325, the performance of 

iCE-IS with the vMFNM distribution deteriorates rapidly.  

 

Figure 2: nRMSE of the estimators obtained using REIN, iCE-IS with vMFNM model, and SS for LSF 𝑔2 

4.1.3 High dimension highly nonlinear limit state function 

Consider the following LSF defined in the standard normal space (Papakonstantinou and Nikbakht, 2020) 𝑔3(𝐱) = 4 − 1√𝑑 ∑ 𝑥𝑖𝑑𝑖=1 + 2.5(𝑥1 − ∑ 𝑥𝑖3𝑖=2 )2 + (𝑥4 − ∑ 𝑥𝑖6𝑖=2 )4 + (𝑥7 − ∑ 𝑥𝑖9𝑖=8 )8
 (14) 

In this study, we vary the dimension 𝑑 ∈ {100, 200, 300}. We use a normalizing flow model with 𝑁f = 75 

flow layers, a learning rate of 0.01, batch size 𝑁b = 100, and train for 𝑇 =  3000 epochs. iCE-IS with 

vMFNM models failed to converge even after we increased the sample size used in each iteration to 105. 

Table 1 lists the performance of REIN and SS in this example. REIN outperforms SS by a significant 

margin. 

Table 1: Comparison of performance of REIN and SS on the LSF 𝑔3 for varying dimension 𝑑 (Bold indicates 

best performance). 𝒅 𝐏𝑭 REIN SS 

nRMSE 𝑁call nRMSE 𝑁call 
100 3.43 ×  10−7 0.120 3.05 ×  10−7 0.269 3.28 ×  105 

200 3.55 ×  10−7 0.158 3.05 ×  10−7 0.265 3.28 ×  105 

300 3.71 ×  10−7 0.134 3.05 ×  10−7 0.262 3.28 ×  105 

 

4.2 Applications 

We consider a high dimensional nonlinear engineering application (Papakonstantinou and Nikbakht, 2020): a 

thirty-four-story shear frame subjected to a static load 𝐹i at each floor level 𝑖, as shown in Figure 3. These 

lateral loads could represent static equivalent seismic or wind forces. The floor slabs, assumed rigid, are 

supported on two columns, each of 4 m length, with flexural rigidities 𝐸𝐼1,𝑖 and 𝐸𝐼2,𝑖, respectively.  
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The static loads and flexural rigidities of the columns are assumed to be normally distributed with means 

2 kN and 20 MNm2
, respectively,

 
and coefficients of variation 0.4 and 0.2, respectively. Thus, there are a 

total of 102 random variables, i.e., 𝑑 =  102, in this application. The LSF is given as: 

 

Figure 3: Thirty-four story shear frame subject to static lateral loads at every floor level  𝑔 = 0.235 − |∑ 𝑢𝑖34𝑖=1 |, (15) 

where 𝑢𝑖 is the 𝑖th
 inter-story drift, which is computed as 𝑢𝑖 = 𝐻3 ∑ 𝐹𝑖𝑖𝑗=1 12(𝐸𝐼1,𝑖 + 𝐸𝐼2,𝑖)⁄ . (16) 

The reference value of P𝐹  =  2.63 × 10−7 is computed using MCS with 109 realizations. In this 

application we use a normalizing flow model with 𝑁f = 10 flow layers that is trained for T =  3000 epochs 

at a learning rate of 0.001 and batch size 𝑁b = 100. We also use 𝛼end = 10, 𝛾start = 4 and 𝑇′ = 0.9𝑇. 

Finally, we use 𝑁 =  5000 to compute P𝐹REIN. For iCE-IS, we use a sample size of 500 in each iteration. 

REIN yields an estimator with nRMSE = 0.064 for 𝑁call = 3.05 × 105. In comparison, with a similar 

number of LSF evaluations, iCE-IS with vMFNM yielded an estimator with nRMSE of 0.464. In the case of 

SS, the estimator had nRMSE = 0.085, albeit for 𝑁call = 3.28 ×  105. REIN outperforms the other variance 

reduction methods on this high dimensional problem since its estimator achieved the lowest value of nRMSE 

for a similar number of LSF evaluations. 

5 CONCLUSIONS 

In this paper, we introduce REIN, which utilizes NFs to construct ISDs that can be used to efficiently 

estimate rare-event probabilities. Through various examples, we have demonstrated that REIN can be a 

potential tool for rare-event probability estimation where little to no prior knowledge about the rare-event 

domain and/or the number of failure modes is known. Further, REIN was found to outperform iCE-IS and SS 

on all moderate to high-dimensional examples. Future work should explore the effects of various 

hyperparameters — 𝛼end, 𝛾start, 𝑇, 𝑇′, 𝑁b and 𝑁f — on REIN. 
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