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ABSTRACT 

Second-order P-delta effects require consideration as part of the seismic design and assessment of 

buildings, as they can amplify lateral displacement demands and potentially cause collapse through 

dynamic instability. International codes mitigate the likelihood of P-delta collapse by limiting the 

value of a P-delta stability coefficient, checked at design intensity levels. However, codes set 

seismic design provisions in order to limit the annual fatality risk, which is linked to the annual 

probability of collapse (i.e. the collapse risk) that is in turn related to the design intensity, 

acknowledging that earthquake shaking can exceed design intensity levels. This paper considers the 

factors that are likely to affect the collapse risk due to P-delta effects and the implications for 

fatality risk. By examining the results of non-linear time-history analyses of many single-degree of 

freedom (SDOF) systems, it is shown that in addition to the so-called P-delta stability coefficient, 

the hysteretic characteristics of a structure can significantly affect the annual probability of collapse. 

Collapse fragility functions due to P-delta effects are defined for two different hysteretic models 

deemed to be representative of well-detailed steel and reinforced concrete buildings. Subsequently, 

the implications of the results for seismic design are considered. It is argued that future codes 

should utilise P-delta collapse fragility curves when setting limits to P-delta stability coefficients. 

This could help ensure that the annual fatality risk associated with dynamic instability is limited to 

acceptable levels.  

1 INTRODUCTION 

International seismic design codes (e.g. Eurocode 8, ASCE7-22 and NZS1170.5) tend to permit the analysis 

of structures for earthquakes using linear, first-order analysis methods. However, because it has long been 

recognised (e.g. Rosenblueth 1965, Paulay 1978, Bernal 1987, MacRae et al. 1993) that second order P-delta 

effects can increase displacement demands and risk dynamic instability, codes also prompt designers to 

compute a P-delta stability coefficient, P, given by Equation 1.  
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𝜃𝑃∆ =
𝑃∆0

𝑉𝐻
 (1) 

where, as shown in Figure 1, P is the force due to gravity acting on the structure,  is the lateral 

displacement (at the centre of mass) obtained from a first order analysis, H is the height of the structure, and 

V is the lateral resistance offered by the structure at the displacement .  

 

Figure 1: Illustrating the impact of second-order P-delta action on the lateral force-displacement response 

(right side of figure) of a SDOF system. 

The right-side of Figure 1 also illustrates that during an earthquake, P-delta effects tend to increase the peak 

displacement demand, to an amount shown as 1. The ratio of 1 to 0 is referred to here as a displacement 

amplification ratio, . The general relationship between the displacement amplification factor and the P-

delta stability coefficient is shown in Figure 2. For low values of stability coefficient, P-delta effects are 

negligible. However, for high values of P-delta stability coefficient, dynamic instability can occur, in which 

the structural system is unable to return to its original undeformed state because of the second-order 

overturning demand.  

 

Figure 2: General relationship between displacement amplification and P-delta stability coefficient (After 

De Francesco and Sullivan, 2023a). 
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Once a designer has computed the P-delta stability coefficient, seismic design codes then usually prompt 

mitigation of P-delta effects in the following two ways: 

• Amplification of displacement demands (and hence strength and stiffness requirements) for a P-delta 

stability coefficient that exceeds a minimum value (Pmin in Figure 2), typically taken as 0.10. 

• Checking that the P-delta stability coefficient obtained at the design intensity does not exceed a 

maximum value (Pmax in Figure 2), typically taken as 0.30. 

The latter of these checks, that the stability coefficient does not exceed a maximum value, is implemented in 

codes to limit the risk of building collapse due to dynamic instability. There is an expectation that for 

shaking at the design intensity, dynamic instability will be unlikely because of this code check. However, it 

is also recognised that codes rely on buildings possessing some reserve capacity for shaking intensity levels 

that significantly exceed the design intensity. As P-delta stability coefficients increase with increasing 

earthquake shaking intensity (since the denominator in Equation 1 tends to remain constant post-yield), 

dynamic instability of the structure becomes more likely for higher intensity shaking. With this in mind, the 

factors affecting the likelihood of collapse due to dynamic instability are examined in this paper and the 

implications for seismic design are considered.  

2 NUMERICAL INVESTIGATION INTO P-DELTA EFFECTS 

Results from a recent investigation into P-delta effects by De Francesco and Sullivan (2023) are used to 

examine the factors affecting the likelihood of collapse due to dynamic instability here. In the work of De 

Francesco and Sullivan (2023a,b), an ensemble of 1964 ground motions were used to conduct non-linear 

time-history analyses of SDOF systems with either bilinear, Takeda, Sina or Flag-shaped hysteretic models. 

In this work, the results for the Bi-linear and Takeda models, illustrated in Figure 3, are examined because 

these could be representative of well-detailed steel and reinforced concrete structures, respectively. The post-

yield stiffness ratio, r, for each model was taken as 0.05. For each hysteretic model, SDOF models were 

generated with periods of vibration ranging from 0.5s to 4.0s, four different effective heights, and yield 

strength coefficients (defined as the ratio of the base shear at yield to the building weight) ranging from 

0.025 to 0.50. Each model was subject to non-linear time-history analysis using a first- and second-order 

analysis regime, with a tangent-stiffness proportional damping model and a damping ratio of 5%. A novel 

implementation of the tangent-stiffness damping model was used to avoid inappropriate damping forces in 

the post-yield range, as explained in De Francesco and Sullivan (2022).   

 

Figure 3: Force-displacement hysteretic models considered herein; (a) Bi-linear and (b) Takeda models. 

Figure adapted from Stafford et al. (2016).  

 

Figure 2. Force-displacement hysteretic models considered in this work; (a) Bi-linear, (b) Takeda, 

(c) SINA, and (d) Flag-shaped models. 

The first of the models depicted in Figure 2 is the bi-linear hysteretic model and is 

characterized by an initial stiffness, , yield force, , and post-yield stiffness ratio, , 

noting that the unloading stiffness of the bi-linear model is taken equal to the initial 

stiffness. The bi-linear model can be considered representative of the hysteretic behaviour 

of steel structures or structures base-isolated on friction pendulum devices or lead-rubber 

bearings. The second of the models shown is the Takeda model (Otani, 1981), and in 

addition to the parameters , , and , common to the bi-linear model, it requires 

definition of an unloading stiffness parameter, , and a re-loading parameter,  

(according to the Emori-Schonbrich, 19XX approach). The Takeda model is commonly 

used to represent well-detailed RC building structures and bridges (Priestley et al. 2007). 

The third model shown in Figure 2 is the SINA model (Saiidi and Sozen, 1979) that has 

been simplified in this work to possess a bi-linear (instead of trilinear) backbone force-

displacement curve and symmetric positive and negative loading behavior. The SINA 

model is characterized by significant stiffness degradation with increasing deformation 
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The analyses run by De Francesco and Sullivan (2023) generated a large dataset of results. Figure 4 

illustrates the displacement amplification factors obtained by De Francesco and Sullivan (2023b, 2023c) for 

the bilinear hysteretic model. The grey diamonds indicate the results obtained for individual ground motions 

whereas black dots represent the median amplification obtained for different ranges of P-delta stability 

coefficient (defined according to Equation 1), with a bin size of 0.05 considered. In order to highlight the 

shape of the data, Figure 4 plots the results to a maximum P-delta stability coefficient of 0.4 and 

amplification factor of 5.0 even though the full data set includes data out to stability coefficients beyond 1.0 

and very high amplification factors (indicative of collapse due to dynamic instability). 

     

Figure 4: Displacement amplification factors obtained by De Francesco and Sullivan (2023b, 2023c) for 

SDOF systems with bi-linear hysteretic force-displacement characteristics. 

3 P-DELTA COLLAPSE FRAGILITY CURVES 

In order to quantify the annual probability of collapse due to P-delta effects, collapse fragility curves are 

sought. Interestingly, whilst many different collapse fragility curves for buildings can be found in the 

literature, the authors did not find any collapse fragility curves specifically associated with P-delta induced 

dynamic instability.  Such curves are considered particularly relevant for very well detailed structures that 

may have been designed with large design ductility values, and low overturning resistances, owing to 

inherently large ductility capacities.  

In this work, collapse due to P-delta induced dynamic instability is assumed to occur when a displacement 

amplification ratio of five or more was recorded. In other words, collapse due to P-delta was deemed to occur 

when the NLTH analysis with P-delta effects generated a peak displacement demand five times (or more) 

greater than the peak displacement demand obtained from NLTH analysis without P-delta effects. Using this 

criterion, the data generated by De Francesco and Sullivan (2023) is utilised here to generated collapse 

fragility curves as a function of the P-delta stability coefficient. Data was grouped into stability coefficient 

bins with intervals of 0.05. The number of collapses recorded and the total number of analysis results for 

each bin are reported in Table 1. These numbers were then used to compute the probability of collapse due to 

dynamic instability as a function of the P-delta stability coefficient. Subsequently, the maximum likelihood 

method was used (in line with the recommendations of Baker, 2015) to establish collapse fragility curves as a 

function of P-delta stability coefficient, as illustrated in Figure 5. The resulting fragility functions are 

characterised by median values of P-delta stability coefficient of 0.44 and 0.65 for the Bi-linear and Takeda 
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hysteretic models respectively, together with dispersion values equal to 0.40 and 0.35, again respectively for 

the Bi-linear and Takeda hysteretic models. 

 

Table 1: Summary of collapse data from NLTH analyses by De Francesco and Sullivan (2023c). Note that 

data has been binned within each of the stability coefficients shown using a bin size of 0.05.   

 Bi-linear Hysteretic Model Takeda Hysteretic Model 

Stability 

Coefficient, P 

No. of 

analyses 

No. of 

collapses 

Prob. of 

collapse 

No. of 

analyses 

No. of 

collapses 

Prob. of 

collapse 

0.025 75395 0 0.000 70890 0 0.000 

0.075 22245 0 0.000 21333 0 0.000 

0.125 11899 0 0.000 11303 0 0.000 

0.175 7670 32 0.004 7211 3 0.000 

0.225 4974 175 0.035 4886 3 0.001 

0.275 4410 464 0.105 4276 26 0.006 

0.325 3069 788 0.257 2958 53 0.018 

0.375 1845 833 0.451 1760 99 0.056 

0.425 1582 902 0.570 1474 160 0.109 

0.475 1161 739 0.637 1095 197 0.180 

0.525 768 571 0.743 699 210 0.300 

0.575 840 609 0.725 770 299 0.388 

0.625 793 563 0.710 725 322 0.444 

0.675 601 475 0.790 588 316 0.537 

0.725 504 411 0.815 505 319 0.632 

0.775 459 381 0.830 395 266 0.673 

0.825 330 302 0.915 360 283 0.786 

0.875 234 217 0.927 253 199 0.787 

0.925 218 207 0.950 198 157 0.793 

0.975 169 159 0.941 135 112 0.830 
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Figure 5: Displacement amplification factors obtained by De Francesco and Sullivan (2023) for SDOF 

systems with bi-linear (left) and Takeda (right) hysteretic force-displacement characteristics. 

4 IMPLICATIONS FOR SEISMIC DESIGN 

The fragility functions generated in the previous section could be quite useful for future code writers. The 

first apparent result is that structures with bi-linear hysteretic characteristics, such as steel structures, are 

more prone to P-delta instability than structures with Takeda hysteretic characteristics. This agrees with 

results reported in prior studies and can be anticipated for reasons discussed by Priestley et al. (2007). The 

second observation one might make is that the imposition of a code maximum limit to the P-delta stability 

coefficient equal to P,max = 0.30 (refer Figure 2) may seem reasonable at first, since there appears to be only 

a 1 in 10 chance that dynamic instability would occur at this level of demand (and even lower chances for the 

Takeda model). However, recall that code writers assume that structures possess reserve capacity to resist 

shaking intensity levels well beyond the design seismic intensity. Thus, it is argued that a better means of 

judging whether the P-delta stability coefficient is suitable is to evaluate what this would imply in terms of 

annual probability of building collapse.  

To compute the annual probability of collapse due to P-delta effects (i.e. dynamic instability), one can 

combine a fragility function with a hazard curve and integrate over the relevant range of intensity levels. As 

hazard curves provide the annual probability of exceeding different levels of shaking intensity (and not P-

delta stability coefficients), one requires a relationship between shaking intensity and P-delta stability 

coefficient in order to use the fragility curves in Figure 5. For simplicity, one could assume that the P-delta 

stability coefficient will increase approximately in proportion to the shaking intensity (similar to the equal-

displacement rule). If this is done for a hypothetical building in Wellington, designed to the stability 

coefficient limit of 0.30 at the ULS design intensity, then integrating the P-delta fragility curves in Figure 5 

(scaled so that the stability coefficient equals 0.30 for the ULS design intensity level) with the hazard 

information from the latest NZ seismic hazard model (sourced from the GNS website with a period T = 0.5s 

and Vs30 = 400m/s), one obtains an annual probability of collapse due to P-delta of 1.2 x 10-3 for steel 

buildings and 3.3 x 10-4 for RC buildings. This process is illustrated in Figure 6.   
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Figure 6: Fragility functions for P-delta collapse of RC structures (Takeda model) as a function of EQ 

intensity assuming different design limits for the P-delta stability coefficient (left) and contributions to the 

annual probability of collapse (right) obtained by combining the fragility functions with hazard information. 

In reality, it is expected that first-order displacement demands will tend to increase more quickly with 

increasing intensity than at lower levels of shaking and thus, the annual probability of collapse may be even 

higher than the values reported above. Given that the commentary to NZS1170.5 suggests that the annual 

probability of collapse should be less than 1x10-4, it is therefore quite evident that a stability coefficient limit 

of 0.30 may not be limiting the annual probability of collapse adequately. Given this, Figure 6 also includes 

fragility functions that might be expected if two alternative design limits of P,max = 0.21 and P,max = 0.12 

were imposed on the P-delta stability coefficient. The two alternative limits trialled in Figure 6 have been set 

(for the assumed hazard model) to achieve annual probabilities of collapse of 1x10-4 or 1x10-5 (for the limits 

of 0.21 and 0.12 respectively). The lower limit has been trialled because it is argued that acceptable annual 

collapse rates due to dynamic instability should be set considerably lower than collapse rates due to localised 

loss of structural (or non-structural) deformation capacity. This is because the likelihood of fatalities 

conditional on collapse will be much higher in the case of dynamic instability than for the case of localised 

structural failures. As such, if an annual probability of collapse of 1x10-4 is thought to be acceptable for 

localised structural failures, then the annual probability of collapse due to P-delta (dynamic instability) 

should be lower, say 1x10-5. Table 2 presents the limiting values of stability coefficient that would need to be 

maintained at the ULS design intensity (assumed to have an annual probability of exceedance of 1 in 500 

years) for either 1x10-4 or 1x10-5 for the bilinear and Takeda hysteretic models. It is seen that design limits 

for the P-delta stability coefficient would need to be considerably lower than the value of 0.30 used in 

current codes. Such limits may begin to become critical in seismic design (noting that the stability coefficient 

is not usually critical in practice currently) and hence, it is recommended that the collapse risk due to P-delta 

effects should be considered carefully when drafting future seismic design standards. 

Table 2: Relating limits for the P-delta coefficient to be checked at the ULS design intensity, with the target 

annual collapse probability for a hypothetical building in Wellington. 

 Bi-linear  Takeda 

Pmax for annual collapse probability = 1x10-4 0.13 0.21 

Pmax for annual collapse probability = 1x10-5 0.08 0.12 

 

By summing 

contributions over all 

intensity levels, the 

total annual 

probability of 

collapse is obtained. 

The probability of collapse at different intensity 

levels is combined with the probability of 

occurrence of the intensity level to give 

contributions to annual probability of collapse. 
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5 CONCLUSIONS 

Using the results of an extensive numerical investigation by De Francesco and Sullivan (2023), this 

paper has highlighted the factors that are likely to most affect the collapse risk due to P-delta effects 

and considered the implications for seismic design. The SDOF models used for the NLTH analyses 

by De Francesco and Sullivan (2023) included Bilinear and Takeda hysteretic characteristics 

(representative of well detailed steel and reinforced concrete buildings respectively), periods of 

vibration that varied from 0.5s to 4.0s and a range of strength coefficients. The NLTH analyses 

were conducted for a large set of recorded ground motions. Results indicate that in addition to the 

P-delta stability coefficient, the hysteretic characteristics of a structure can significantly affect the 

annual probability of collapse. Furthermore, by examining the rate of collapse as a function of P-

delta stability coefficient, new fragility functions associated with P-delta dynamic instability have 

been obtained. Subsequently, the implications of the findings for seismic design have been 

considered. It is argued that design limits for the P-delta stability coefficient should be set with 

consideration of the collapse risk that would result. It is proposed that this collapse risk can be 

quantified by combining P-delta collapse fragility curves with hazard information. By trialling this 

approach for a Wellington hazard curve, it is found that the current stability coefficient limit of 0.30 

adopted in most international codes may lead to unacceptably high collapse risk probabilities. By 

reducing the limit to around 0.2 or 0.1, the annual probability of collapse could be reduced to 

around 1x10-4 or 1x10-5 respectively, with the latter value arguably more appropriate for control of 

fatality risk. 

The process explored in this work for the definition of P-delta collapse fragility functions and 

design limits for stability functions could be examined further before adoption in practice. One 

aspect that could be examined is whether the range of SDOF systems examined by De Francesco 

and Sullivan (2023a,b) adequately represents the building stock in New Zealand, because this might 

impact the fragility functions obtained. Two specific aspects to include would be: (i) the effective 

height of the SDOF models (noting that the dataset from De Francesco and Sullivan was generated 

for effective heights of 1m, 4m, 20m and 40m) and (ii) the contribution of gravity framing and other 

secondary load paths to the post-yield stiffness ratio (shown as r in Figure 3), which was taken as 

0.05 in this study. In addition, this work has focussed on the behaviour of SDOF systems because it 

is assumed that the first mode response dominates the displacement and overturning demands on 

multi-degree of freedom (MDOF) structures. To this extent, note that seismic design standards often 

check P-delta stability coefficients on a storey-by-storey basis whereas the limits obtained in this 

work correspond to the equivalent SDOF system demands. As such, future research should also 

investigate whether there is a need for storey-based limits or whether equivalent SDOF limits to the 

stability coefficient would be adequate. Furthermore, some differences in P-delta collapse fragility 

may result from the examination of MDOF systems compared to SDOF systems, and so this could 

be examined as part of future research too.  
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